Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.226
1.
Front Immunol ; 15: 1374088, 2024.
Article En | MEDLINE | ID: mdl-38725999

Background: In vitro studies often use two-dimensional (2D) monolayers, but 3D cell organization, such as in spheroids, better mimics the complexity of solid tumors. To metastasize, cancer cells undergo the process of epithelial-to-mesenchymal transition (EMT) to become more invasive and pro-angiogenic, with expression of both epithelial and mesenchymal markers. Aims: We asked whether EMMPRIN/CD147 contributes to the formation of the 3D spheroid structure, and whether spheroids, which are often used to study proliferation and drug resistance, could better model the EMT process and the metastatic properties of cells, and improve our understanding of the role of EMMPRIN in them. Methods: We used the parental mouse CT26 colon carcinoma (CT26-WT) cells, and infected them with a lentivirus vector to knock down EMMPRIN expression (CT26-KD cells), or with an empty lentivirus vector (CT26-NC) that served as a negative control. In some cases, we repeated the experiments with the 4T1 or LLC cell lines. We compared the magnitude of change between CT26-KD and CT26-WT/NC cells in different metastatic properties in cells seeded as monolayers or as spheroids formed by the scaffold-free liquid overlay method. Results: We show that reduced EMMPRIN expression changed the morphology of cells and their spatial organization in both 2D and 3D models. The 3D models more clearly demonstrated how reduced EMMPRIN expression inhibited proliferation and the angiogenic potential, while it enhanced drug resistance, invasiveness, and EMT status, and moreover it enhanced cell dormancy and prevented CT26-KD cells from forming metastatic-like lesions when seeded on basement membrane extract (BME). Most interestingly, this approach enabled us to identify that EMMPRIN and miR-146a-5p form a negative feedback loop, thus identifying a key mechanism for EMMPRIN activities. These results underline EMMPRIN role as a gatekeeper that prevents dormancy, and suggest that EMMPRIN links EMT characteristics to the process of spheroid formation. Conclusions: Thus, 3D models can help identify mechanisms by which EMMPRIN facilitates tumor and metastasis progression, which might render EMMPRIN as a promising target for anti-metastatic tumor therapy.


Basigin , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Spheroids, Cellular , Basigin/metabolism , Basigin/genetics , Spheroids, Cellular/metabolism , Animals , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Mice , Cell Line, Tumor , Neoplasm Metastasis
2.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743625

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


AMP-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Spheroids, Cellular , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Spheroids, Cellular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation , Cell Line, Tumor , CRISPR-Cas Systems , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
3.
Sci Rep ; 14(1): 11013, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745039

Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.


Neoplastic Stem Cells , Spheroids, Cellular , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , SOXB1 Transcription Factors/metabolism , Image Processing, Computer-Assisted/methods , Microscopy, Confocal , Cell Line, Tumor
4.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693105

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Camptothecin/analogs & derivatives , Colonic Neoplasms , Fluorouracil , Neoplastic Stem Cells , Spheroids, Cellular , Thyroid Hormone Receptors alpha , Triiodothyronine , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors alpha/genetics , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Triiodothyronine/pharmacology , Leucovorin/pharmacology , Leucovorin/therapeutic use , Camptothecin/pharmacology , Camptothecin/therapeutic use , Phenotype , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
5.
Int J Biol Macromol ; 267(Pt 1): 131574, 2024 May.
Article En | MEDLINE | ID: mdl-38615857

Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.


Caulerpa , Colonic Neoplasms , Edible Seaweeds , Polysaccharides , Spheroids, Cellular , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Caulerpa/chemistry , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Cell Culture Techniques, Three Dimensional/methods , Cell Proliferation/drug effects , HT29 Cells , Cell Line, Tumor , HCT116 Cells , Gene Expression Regulation, Neoplastic/drug effects
6.
Sci Rep ; 14(1): 9357, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653823

The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue. Based on the TissUse Humimic platform our model combines healthy renal proximal tubule epithelial cells (RPTEC) and RCC. Co-culturing reconstructed RPTEC tubules with RCC spheroids in a closed micro-perfused circuit resulted in significant phenotypical changes to the tubules. Expression of immune factors revealed that interleukin-8 (IL-8) and tumor necrosis factor-alfa (TNF-α) were upregulated in the non-malignant cells while neutrophil gelatinase-associated lipocalin (NGAL) was downregulated in both RCC and RPTEC. Metabolic analysis showed that RCC prompted a shift in the energy production of RPTEC tubules, inducing glycolysis, in a metabolic adaptation that likely supports RCC growth and immunogenicity. In contrast, RCC maintained stable metabolic activity, emphasizing their resilience to external factors. RNA-seq and biological process analysis of primary RTPTEC tubules demonstrated that the 3D tubular architecture and MPS conditions reverted cells to a predominant oxidative phosphorylate state, a departure from the glycolytic metabolism observed in 2D culture. This dynamic RCC co-culture model, approximates the physiology of healthy renal tubules to that of RCC, providing new insights into tumor-host interactions. Our approach can show that an RCC-MPS can expand the complexity and scope of pathophysiology and biomarker studies in kidney cancer research.


Carcinoma, Renal Cell , Coculture Techniques , Epithelial Cells , Kidney Neoplasms , Kidney Tubules, Proximal , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line, Tumor , Lipocalin-2/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
7.
ACS Nano ; 18(19): 12168-12186, 2024 May 14.
Article En | MEDLINE | ID: mdl-38687976

Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.


Nanoparticles , Oxygen , Spheroids, Cellular , Humans , Spheroids, Cellular/metabolism , Spheroids, Cellular/drug effects , Oxygen/metabolism , Oxygen/chemistry , Nanoparticles/chemistry , Microscopy, Fluorescence , Infrared Rays , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology
8.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672482

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Brain Neoplasms , Hyaluronan Receptors , Hyaluronic Acid , SOXB1 Transcription Factors , Spheroids, Cellular , Hyaluronic Acid/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Rats , Transcriptome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Cells, Cultured , Cell Fusion
9.
Sci Adv ; 10(17): eadl4463, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669327

Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modified PIEZO1-/- OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.


Ion Channels , Mechanotransduction, Cellular , Ovarian Neoplasms , Spheroids, Cellular , Animals , Female , Humans , Mice , Cell Line, Tumor , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Ion Channels/metabolism , Ion Channels/genetics , Neoplasm Grading , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Spheroids, Cellular/metabolism
10.
Biofabrication ; 16(3)2024 May 09.
Article En | MEDLINE | ID: mdl-38663395

Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.


Doxorubicin , Reactive Oxygen Species , Spheroids, Cellular , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/pathology , Humans , Reactive Oxygen Species/metabolism , Doxorubicin/pharmacology , Cell Fusion , Neoplasms/pathology , Neoplasms/metabolism , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional , Cell Movement , Tissue Engineering
11.
EMBO J ; 43(9): 1770-1798, 2024 May.
Article En | MEDLINE | ID: mdl-38565950

The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.


Breast Neoplasms , CCCTC-Binding Factor , Chromatin , Protein Serine-Threonine Kinases , Humans , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chromatin/metabolism , Chromatin/genetics , Female , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Hippo Signaling Pathway
12.
Cell Death Dis ; 15(4): 303, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684666

Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.


Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Neoplastic Stem Cells , Ferroptosis/genetics , Ferroptosis/drug effects , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/drug effects , Cell Line, Tumor , Lipid Peroxidation , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Iron/metabolism
13.
Acta Biomater ; 179: 192-206, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38490482

While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites. STATEMENT OF SIGNIFICANCE: The mechanical properties of the tumor microenvironment significantly influence cancer cell migration within the primary tumor, yet how these properties affect intercellular interactions in heterogeneous tumors is not well understood. By utilizing calcium and calcium chelators, we dynamically alter collagen-alginate hydrogel stiffness and investigate tumor cell behavior within co-culture spheroids in response to varying degrees of matrix confinement. High confinement is found to trigger cell sorting while reducing confinement for sorted spheroids facilitates collective cell invasion. Notably, without prior sorting, spheroids do not exhibit burst-like migration, regardless of confinement levels. This work establishes that matrix confinement and intercellular adhesion regulate 3D spheroid dynamics, offering insights into cellular organization and migration within the primary tumor.


Cell Movement , Spheroids, Cellular , Spheroids, Cellular/metabolism , Humans , Cell Line, Tumor , Cell Adhesion , Tumor Microenvironment , Extracellular Matrix/metabolism , Models, Biological
14.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38497111

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Islets of Langerhans , Oxygen , Humans , Oxygen/metabolism , Hypoxia/metabolism , Islets of Langerhans/metabolism , Spheroids, Cellular/metabolism , Cell Hypoxia , Cell Survival
15.
Biosensors (Basel) ; 14(2)2024 Feb 11.
Article En | MEDLINE | ID: mdl-38392015

Oxygen consumption has been used to evaluate various cellular activities. In addition, three-dimensional (3D) spheroids have been broadly exploited as advanced in vitro cell models for various biomedical studies due to their capability of mimicking 3D in vivo microenvironments and cell arrangements. However, monitoring the oxygen consumption of live 3D spheroids poses challenges because existing invasive methods cause structural and cell damage. In contrast, optical methods using fluorescence labeling and microscopy are non-invasive, but they suffer from technical limitations like high cost, tedious procedures, and poor signal-to-noise ratios. To address these challenges, we developed a microfluidic platform for uniform-sized spheroid formation, handling, and culture. The platform is further integrated with widefield frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) to efficiently characterize the lifetime of an oxygen-sensitive dye filling the platform for oxygen consumption characterization. In the experiments, osteosarcoma (MG-63) cells are exploited as the spheroid model and for the oxygen consumption analysis. The results demonstrate the functionality of the developed approach and show the accurate characterization of the oxygen consumption of the spheroids in response to drug treatments. The developed approach possesses great potential to advance spheroid metabolism studies with single-spheroid resolution and high sensitivity.


Microfluidics , Spheroids, Cellular , Spheroids, Cellular/chemistry , Spheroids, Cellular/metabolism , Microscopy, Fluorescence , Oxygen/analysis , Oxygen Consumption
16.
Methods Mol Biol ; 2764: 291-310, 2024.
Article En | MEDLINE | ID: mdl-38393602

Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.


Melanoma , Humans , Melanoma/pathology , Cell Cycle , Cell Division , Diagnostic Imaging , Cell Culture Techniques, Three Dimensional , Spheroids, Cellular/metabolism
17.
Ann Biomed Eng ; 52(6): 1625-1637, 2024 Jun.
Article En | MEDLINE | ID: mdl-38409434

Binding kinetics play an important role in cancer diagnosis and therapeutics. However, current methods of quantifying binding kinetics fail to consider the three-dimensional environment that drugs and imaging agents experience in biological tissue. In response, a methodology to assay agent binding and dissociation in 3-D tissue culture was developed using paired-agent molecular imaging principles. To test the methodology, the uptakes of ABY-029 (an IRDye 800CW-labeled epidermal growth factor receptor (EGFR)-targeted antibody mimetic) and IRDye-700DX carboxylate in 3-D spheroids were measured in four different human cancer cell lines throughout staining and rinsing. A compartment model (optimized for the application) was then fit to the kinetic curves of both imaging agents to estimate binding and dissociation rate constants of the EGFR-targeted ABY-029 agent. A statistically significant correlation was observed between apparent association rate constant (k3) and the receptor concentration experimentally and in simulations (r = 0.99, p < 0.05). A statistically significant difference was found between effective k3 (apparent rate constant of ABY-029 binding to EGFR) values for cell lines with varying levels of EGFR expression (p < 0.05), with no significant difference found between cell lines and controls for other fit parameters. Additionally, a similar binding affinity profile compared to a gold standard method was determined by this model. This low-cost methodology to quantify imaging agent or drug binding affinity in clinically relevant 3-D tumor spheroid models can be used to guide timing of imaging in molecular guided surgery and could have implications in drug development.


ErbB Receptors , Spheroids, Cellular , Humans , Spheroids, Cellular/metabolism , ErbB Receptors/metabolism , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/diagnostic imaging , Neoplasms/pathology , Cell Culture Techniques, Three Dimensional
18.
Mol Biol Rep ; 51(1): 275, 2024 Feb 04.
Article En | MEDLINE | ID: mdl-38310615

BACKGROUND: Tumor cell spheroids are organized multicellular structures that form during the expansive growth of carcinoma cells. Spheroids formation is thought to contribute to metastasis by supporting growth and survival of mobile tumor cell populations. METHODS AND RESULTS: We investigated how spheroid architecture affects OXPHOS activity, microRNA expression, and intraperitoneal survival of an ovarian carcinoma cell line using high resolution respirometry, quantitative RT-PCR, and a rodent intraperitoneal growth model. Rates of oxidative phosphorylation/respiration per cell of cells growing as spheroids were nearly double those of a variant of the same cell type growing in suspension as loosely aggregated cells. Further, inhibition of spheroid formation by treatment with CDH2 (N-cadherin) siRNA reduced the rate of OXPHOS to that of the non-spheroid forming variant. Cells growing as spheroids showed greatly enhanced expression of miR-221/222, an oncomiR that targets multiple tumor suppressor genes and promotes invasion, and reduced expression of miR-9, which targets mitochondrial tRNA-modification enzymes and inhibits OXPHOS. Consistent with greater efficiency of ATP generation, tumor cells growing as spheroids injected into the nutrient-poor murine peritoneum survived longer than cells growing in suspension as loosely associated aggregates. CONCLUSIONS: The data indicate that growth in spheroid form enhances the OXPHOS activity of constituent tumor cells. In addition, spheroid architecture affects expression of microRNA genes involved in growth control and mitochondrial function. During the mobile phase of metastasis, when ovarian tumor cells disperse through nutrient-poor environments such as the peritoneum, enhanced OXPHOS activity afforded by spheroid architecture would enhance survival and metastatic potential.


MicroRNAs , Ovarian Neoplasms , Humans , Female , Animals , Mice , Oxidative Phosphorylation , Spheroids, Cellular/metabolism , Cell Line, Tumor , Ovarian Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Cadherins/genetics
19.
Adv Healthc Mater ; 13(11): e2302609, 2024 Apr.
Article En | MEDLINE | ID: mdl-38227977

The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization and adaptation of cancer in three-dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet-based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core-shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F-actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F-actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.


Capsules , Carcinoma, Hepatocellular , Liver Neoplasms , Spheroids, Cellular , Humans , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Viscosity , Hep G2 Cells , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Capsules/chemistry , Alginates/chemistry , Cell Proliferation , Actins/metabolism , Cytoskeleton/metabolism
20.
J Exp Zool B Mol Dev Evol ; 342(3): 301-312, 2024 May.
Article En | MEDLINE | ID: mdl-38192038

In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, Astyanax mexicanus, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of A. mexicanus have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the Astyanax liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived Astyanax cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured Astyanax cells exhibit an altered transcriptomic profile and consequently represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Enzymatic assay measuring antioxidants in 2D culture and 3D spheroids also revealed enhanced antioxidative capacity of 3D cultured spheroids, in line with the differential gene expression data. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Notably, cavefish derived spheroids enriched for genes responding to xenobiotic stimulus, while the ones from surface enriched for immune response, both of which resonated with known physiologically adaptations associated with each morph. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in A. mexicanus and of vertebrates in general.


Cell Culture Techniques , Characidae , Liver , Spheroids, Cellular , Transcriptome , Animals , Characidae/genetics , Characidae/metabolism , Liver/metabolism , Liver/cytology , Cell Culture Techniques/methods , Spheroids, Cellular/metabolism , Cell Line , Caves
...